Efficient Channel State Information Acquisition in Massive MIMO Systems using Non-Orthogonal Pilots

نویسندگان

  • Paul Ferrand
  • Alexis Decurninge
  • Maxime Guillaud
  • Luis Garcia Ordóñez
چکیده

The objective of this article is to review and benchmark strategies to acquire channel state information (CSI) in time-division duplex (TDD) Massive MIMO systems. In particular, we consider the use of statistical CSI at the base stations (BSs), together with non-orthogonal pilot sequences. Such techniques can theoretically reduce the amount of spectral resources dedicated to channel sounding, thanks to the increased pilot reuse that they allow. We review their application, and present a holistic evaluation of their practical implementation and limitations, including factors that are often neglected in theoretical works, including covariance estimation and tracking, non-orthogonal pilot sequences, signaling associated with dynamically allocated pilot sequences, realistic channel model (spatial covariance, stationarity), and imperfect statistical CSI. We present a possible design addressing these various problems with reasonable complexity, and benchmark the achieved performance. Our results show that when the cost of CSI acquisition is properly accounted for, the tracking of statistical CSI together with the use of non-orthogonal pilots enables to reach a higher effective spectral efficiency than what can be achieved with orthogonal pilot sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation

With the rapidly increasing demand for high-speed data transmission and a growing number of terminals, massive multiple-input multiple-output (MIMO) has been shown promising to meet the challenges owing to its high spectrum efficiency. Although massive MIMO can efficiently improve the system performance, usage of orthogonal pilots and growing terminals causes large resource consumption especial...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Utility-based Downlink Pilot Assignment in Cell-Free Massive MIMO

We propose a strategy for orthogonal downlink pilot assignment in cell-free massive MIMO (multiple-input multipleoutput) that exploits knowledge of the channel state information, the channel hardening degree at each user, and the mobility conditions for the users. These elements, properly combined together, are used to define a user pilot utility metric, which measures the user’s real need of a...

متن کامل

Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive MIMO System

This paper proposes a novel approach for designing channel estimation, beamforming and scheduling jointly for wideband massive multiple input multiple output (MIMO) systems. With the proposed approach, we first quantify the maximum number of user equipments (UEs) that can send pilots which may or may not be orthogonal. Specifically, when the channel has a maximum of L multipath taps, and we all...

متن کامل

Structured Compressive Sensing Based Superimposed Pilot Design in Downlink Large-Scale MIMO Systems

Large-scale multiple-input multiple-output (MIMO) with high spectrum and energy efficiency is a very promising key technology for future 5G wireless communications. For large-scale MIMO systems, accurate channel state information (CSI) acquisition is a challenging problem, especially when each user has to distinguish and estimate numerous channels coming from a large number of transmit antennas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017